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1) Foreward 

This work is comprised of a comprehensive investigation of the evolution and stability of, and the 
turbulent mixing and fluxes within, the stable nocturnal boundary layer (NBL) using the Cooperative 
Atmosphere-Surface Exchange Study (CASES) instrumented site in south central Kansas and the greatly 
enhanced in-situ instrumentation to be deployed during CASES-. It was motivated by the need to 
establish the role of the NBL and phenomena within the NBL in surface and boundary layer heat and 
momentum fluxes. It is known that a variety of atmospheric phenomena influence these fluxes, such as 
gravity wave propagation, shear instability, gravity currents, stratified turbulence, mesoscale motions, and 
strong radiative effects. Various combinations of these phenomena likely account for turbulence 
intensities and intermittency, and the corresponding fluxes, within the stable NBL, and therefore its 
complicated scalar dispersion. We have used the correlative high-resolution measurements of turbulence 
generation and mixing during CASES-99 to 1) understand the dynamics and characteristics of turbulence 
in the NBL, 2) identify the dominant sources of turbulence, and 3) quantify the heat and momentum 
fluxes, for the improvement of existing parameterization. 

The CASES-99 field program was held in October 1999 east of Wichita, Kansas. CASES-99 
instrumentation defined the meso-γ and micro-α scale boundary layer evolution and structure. Existing 
data sources in and around the field site provided enhanced ground-based and surface flux 
instrumentation. In-situ boundary-layer instrumentation defined the evolving temperature, wind, and 
constituent profiles and the wave, eddy, and turbulence fluxes of heat and momentum. In addition to 
ARO contributions, instrumentation was supplied by, 1) an NCAR facility request and 2) Argonne 
National Laboratory, 3) NOAA, 4) European organizations, 5) Universities, and 6) other organizations. 

During the 2 year period of the contract we completed extensive observational analyses and 
quantification of NBL flux, including data analysis from the Intensive Observational Periods (IOPs). By 
correlating the measurements from relevant platforms and using those instruments that directly measure 
fluxes (the airborne instruments, lidar, the 60 m and other towers), we have quantified the impact of 
various phenomena on NBL fluxes. In the second year we focussed on dynamical causes of intermittency 
and the development of quantitative representation of NBL flux evolution. Our research has been 
extensive and significantly progressed the atmospheric science field’s knowledge of the processes 
contributing to turbulent mixing and transport in the stable NBL and has specifically enabled their more 
quantitative parameterization. 
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3) List of Appendices, Tables and Illustrations (illustrations only) 

Figure 1: a) σH and σHp (Louis 1981 [dots] and Delage 1997 [stars]) versus Rib and b) H and Hp (Louis 
1981 and Delage 1997) versus Rib. Insufficient data does not allow the drawing of a meaningful line 
beyond Rib = 2.0 in b). Standard deviation ranges are also shown in b) for some of the data. 

Figure 2: a) σu* and σu*p (Louis 1981 [dots] and Delage 1997 [stars]) versus Rib and b) u* and u*p (Louis 
1981 and Delage 1997) versus Rib. Insufficient data does not allow the drawing of a meaningful line 
beyond Rib = 2.0 in b). Standard deviation ranges are also shown in b) for some of the data. 

Figure 3: Ensemble fluxes versus individual fluxes for sensible heat at the 5 m level on the central 60 m 
tower from CASES-99. The text correlation values show that the 5 m heat flux for this particular night 
(as was typical) is correlated less with the average fluxes aloft (0.59) than with fluxes taken at the same 5 
m level from towers at 100 m radii (0.71) but greater than from towers at 300 m radii (0.54). 

4) Statement of the problem studied 

 The intent of our investigation, as proposed, is to: 1) understand the dynamics and characteristics of 
turbulence in the NBL, 2) identify the dominant sources of turbulence, and 3) quantify the heat and 
momentum fluxes with the intent of devising a revision to existing surface layer theory. We have made 
significant progress toward each of these goals. 

5) Summary of the most important results 

We have used CASES-99 nighttime observations to, 1) calculate the sensible heat flux and u*from 
two surface layer formulae (Louis 1981, Delage 1997) and compare the parameterized fluxes to those 
observed, 2) investigate the ‘constant flux’ assumption and the implications of that for the implementa-
tion of surface layer formulae, and 3) characterize the basic statistical behavior of heat and momentum 
fluxes for statically stable conditions, particularly large dynamic stability. Our results suggest that surface 
temperature numerical prediction errors, such as cold bias or occasional unrealistic cooling, over flat ter-
rain can be ascribed to the inadequate representation of the impact of non-local NBL phenomena on local 
fluxes at high Rib, the placement of z1 at high levels compared to the actual surface layer height in the 
clear sky NBL, and over prediction of cooling fluxes at relatively low Rib. We find that the Louis (1981) 
and Delage (1997) formulas predict zero or near-zero sensible heat fluxes for all Rib > ~ 2.0 and Rib > 
1.0, respectively, whereas observations show considerable average negative heat flux for all Rib. For 
momentum flux, the Delage formula predicts near zero values for large Rib, while the Louis formula 
predicts more reasonable mean values. As a result cold air would be generated at the ground surface in a 
numerical model by radiational cooling, but not transferred to the first model grid level above ground, if 
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model Rib became large. Thus, unrealistic vertical temperature gradients could be created which may not 
be adequately balanced by a radiative parameterization, or otherwise create numerical instability. 

We have also investigated the constant flux assumption based on profiles of heat and momentum 
flux. Using a threshold value of 10% and we find that the average surface layer in the NBL for Rib > 0.2 
is either a few meters deep or undefined. These results suggest that it may be difficult to prescribe a fixed 
surface layer height in a numerical model, as is currently the practice, and to also expect exclusively 
similarity-based surface layer formulae to perform adequately at large stability. The near surface heat 
fluxes were found, in the mean for Rib > 0.2, to be reasonably constant and non-monotonic with height up 
to 55 m, making the boundary layer difficult to define, in part because of the influence of increasing 
intermittency between 20 and 55 m above ground. The u* profile for Rib > 0.2 was consistent with 
‘upside-down’ boundary layer concept (Vickers and Mahrt 2002), making the surface layer undefinable, 
whereas the mean sensible heat flux profile exhibited a ‘mirrored’ boundary layer shape. 

We also found (Figures 1 and 2) that the Louis (1981) and Delage (1997) formulae overpredicted the 
magnitude of negative sensible heat flux for 0.1 < Rib < 1.0 and 0.1 < Rib < 0.6, respectively, with this 
overprediction becoming worse and tending towards higher Rib with greater altitude. Momentum flux 
was also overpredicted by these formulas for most Rib < 0.5. As a result, at low but positive Rib these 
formulae will transfer cool air at too great a rate to the first model grid point above ground. This behavior 
can lead to excessive cooling at z1 if flux divergence is negligible above the surface layer. 

CASES-99 observations, and indicated by the scatter, magnitude and standard deviation of H and 
u*for large Rib, (Figures 1 and 2) clearly indicate a wide variety of non-local sources of potential mixing. 
Our results make it tempting to re-propose (Kondo et al. 1978) that the drag coefficient be a constant or 
nearly constant value for high Rib, allowing continued down-gradient transfer for all variables for Rib > 0. 
We propose instead a more physically realistic and comprehensive concept on the basis of the routine 
occurrence of various external atmospheric phenomena inducing fluxes. This approach introduces to sur-
face layer formulae a random component of a defined probability function that would by physically 
bounded by far more comprehensive field observations and practically implemented with additional 
requirements based on model configuration. Further details can be found in Poulos and Burns (2003). 

In addition to the above results, in summary we have found (see details in Fritts et al. 2003, Poulos et 
al. 2002, Blumen et al. 2001, Balsley et al., 2002, ) 

• CASES-99 data led to characterization of large-scale KH instabilities that appear to play a large, 
transient role in NBL mixing. This turbulent exchange can frequently, particularly in regions 
where nocturnal, low-level jets are present, lead to a restructuring of the atmospheric profile, with 
subsequent influence on inversion strength prediction and surface low temperature prediction. 

• CASES-99 data permitted an assessment of ducted structures that appear to be a persistent 
feature of NBL dynamics. Generally, thought to be gravity waves, these features propagate 
through the evolving NBL with some significant effects if subjected to shear. In general, these 
features are responsible of NBL oscillations in pressure, temperature and momentum, as would be 
expected from gravity wave propagation. 

• CASES-99 data led to the discovery of surface flow impacts on NBL wave structure, suggesting 
a mechanism for wave excitation and contaminant dispersal. In particular, body-forcing has been 
found to create conditions conducive to vertical wave propagation from an otherwise unknown 
source: local, small-scale terrain variation with coincident wind direction change. This mechanism 
would operate over much of the Earth’s surface which is characterized by terrain features 
somewhat similar to the rolling flatlands of southeastern Kansas where CASES-99 was held. 
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• A catalog of CASES-99 fluxes, intermittency statistics and horizontal correlations has also been 
produced which will lead to additional publications upon further examination. This archive can be 
found at  http://www.co-ra.com/~shane/ As is clear from the statistics shown therein, the stable 
NBL fluxes are rather well correlated over many nights, ensembled, but on any given night, poorly 
correlated even within 100 m radii (e.g. Figure 3). 

In summary, the CASES-99 field experiment, which was organized by the co-I’s, was an 
extraordinarily successful investigation of the stable nocturnal boundary layer. Thus, far we have 
produced and co-edited two Special Issues (Boundary Layer Meteorology and the Journal of 
Atmospheric Sciences) and generated innumerable publications which describe expanded understanding 
of the stable and very stable (Ri > 1.0) NBL. 

The CASES-99 Special Issue of the Journal of Atmospheric Sciences was presented to the scientific 
community in honor of our co-I Dr. William Blumen, Professor Emeritus in the Program of Atmospheric 
and Oceanic Sciences at the University of Colorado at Boulder and initiator of CASES-99, who died on 
23 April 2002 at the age of 70.  We would like to take a couple paragraphs in this summary to honor 
Bill’s contributions. 

Through his involvement with the overarching Cooperative Atmosphere-Surface Exchange Study 
(CASES), Bill was the progenitor of CASES-99, an investigation of these exchanges under statically 
stable near surface conditions. He was dedicated to formulating CASES-99 from the ground up, starting 
with an assessment of interest within the atmospheric science community through announcements at 
Boundary Layer and other conferences. Scientific goals were crystallized in a concise series of meetings 
and communications, and Bill either led or directed much of the CASES-99 effort with aplomb. 

Some knew Bill most for his achievements in theoretical atmospheric physics, but we recall with 
fondness his ability to dirty his hands in the months approaching and during the CASES-99 field 
experiment. We spent many days driving around the countryside of southeastern Kansas with Bill in 
search of the central site for CASES-99, in search of landowners to obtain permission, in negotiations to 
see if cattle could be removed from the premises (e.g. the photo above, courtesy Dr. Julie Lundquist), 
waiting at the offices of the local county seat for the maps required, setting up instrumentation and finally 
spending many cold, nighttime hours directing aircraft and remote sensing field observation. During those 
days and nights, in addition to typical banter, we would encourage Bill to discuss his early days in the 
Navy and at MIT. For the younger researchers, this was like reviewing a portion of the more recent 
foundations of atmospheric science. As the hours passed so did Bill’s wisdom, along with cautionary tales 
of maintaining standards and honor. 
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10) Appendixes (Figures 1-3) 

 
Figure 1: a) σH and σHp (Louis 1981 [dots] and Delage 1997 [stars]) versus Rib and b) H and Hp (Louis 
1981 and Delage 1997) versus Rib. Insufficient data does not allow the drawing of a meaningful line 
beyond Rib = 2.0 in b). Standard deviation ranges are also shown in b) for some of the data. 
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Figure 2: a) σu* and σu*p (Louis 1981 [dots] and Delage 1997 [stars]) versus Rib and b) u* and u*p (Louis 
1981 and Delage 1997) versus Rib. Insufficient data does not allow the drawing of a meaningful line 
beyond Rib = 2.0 in b). Standard deviation ranges are also shown in b) for some of the data. 
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Figure 3: Ensemble fluxes versus individual fluxes for sensible heat at the 5 m level on the central 60 m 
tower from CASES-99. The text correlation values show that the 5 m heat flux for this particular night 
(as was typical) is correlated less with the average fluxes aloft (0.59) than with fluxes taken at the same 5 
m level from towers at 100 m radii (0.71) but greater than from towers at 300 m radii (0.54). 




